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Abstract

This paper is an attempt to incorporate the idea of spiking neurons into the area of
membrane computing, and to this aim we introduce a class of neural-like P systems which we
call spiking neural P systems (in short, SN P systems). In these devices, the time (when the
neurons fire and/or spike) plays an essential role. For instance, the result of a computation
is the time between the moments when a specified neuron spikes. Seen as number computing
devices, SN P systems are shown to be computationally complete (both in the generating
and accepting modes, in the latter case also when restricting to deterministic systems). If
the number of spikes present in the system is bounded, then the power of SN P systems falls
drastically, and we get a characterization of semilinear sets. A series of research topics and
open problems are formulated.

1 Introduction

Membrane computing takes as starting point the generic alive cell, considered alone (and in
this case the internal compartmentalization by means of hierarchically arranged membranes
plays a central role, [10]), or organized in tissues, organs, or other types of cell populations.
In the second case, the cells are considered mono-membranar, placed in the nodes of a graph.
This extension was first considered in [12], and then further elaborated in [8] and [11] (and in
many subsequent papers for which we refer the reader to the bibliography available at [16]). In
particular, in [8] also so-called neural-like P systems were introduced, where some ideas from
neurobiology are incorporated (synapses, with the replication of impulses in the case of multiple
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synapses, linking a neuron to several neighboring neurons, state of a neuron, as a model of
the excitation protocol of neurons, etc.). However, an essential aspect is not captured in these
systems, namely the fact that most of the neural impulses are almost identical, electrical signals
of a given voltage, with a crucial role played by the time when these signals are issued, hence
by the intervals between signals. This is an intriguing aspect, in a sharp distinction with many
models of computer science: the information is not encoded in a sequence of different “symbols”,
but in the sequence of moments when a unique “symbol”, the neuron spike, occurs. Otherwise
formulated, in this framework time is (also) a data support; it is not (only) a computing resource
as in usual complexity theory, but a way to encode information.

Encoding information in the duration of events, or in the interval of time elapsed between
events, and related topics about time in classic computability or in more recent areas, e.g., in
neural computing, were discussed in several places; we only mention here a few titles – [4], [5],
[14], [15] – as well as a few titles related to spiking neural nets – [2], [6], [7].

The present paper takes this challenge, of using time as data support, and tries to adapt
neural P systems to the spiking neurons realm.

Our proposal is the following one (rather simple in principle): let us use only one object, the
symbol denoting a spike, and one-membrane cells (called neurons) which can hold any number
of spikes; each neuron fires in specified conditions (after collecting a specified number of spikes,
which are accumulated, added one after another) and then sends one spike along its axon; this
spike passes to all neurons connected by a synapse to the spiking neuron (hence it is replicated
into as many copies as many target neurons exist); between the moment when a neuron fires
and the moment when it spikes, each neuron needs a time interval, and this time interval is
the essential ingredient of the system functioning (the basic information carrier – with the
mentioning that also the number of spikes accumulated in each moment in the neurons provides
an important information for controlling the functioning of the system); one of the neurons is
considered the output one, and its spikes provide the output of the computation.

This basic idea can be implemented in various ways in a formal model. The variant we
choose is rather restrictive: the rules for spiking should take into account all spikes present in a
neuron not only part of them; not all spikes present in a neuron are consumed in this way; after
getting fired and before sending the spike to its synapses, the neuron is idle (biology calls this
the refractory period) and cannot receive spikes; a computation is successful only if the output
neuron spikes exactly twice during the computation; the result of a computation is the number
of steps elapsed between the two spikes of the output neuron. There are also rules used for
“forgetting” some spikes, rules which just remove a specified number of spikes from a neuron.

Note the important fact that in order for a computation to be successful we do not request
that the computation halts, but only to have exactly two spikes sent to the environment.

Even in this restrictive framework, our devices turn out to be Turing complete, able to
compute all Turing computable sets of natural numbers, both in the generative mode (as sketched
above, a number is computed if it represents the interval between the two consecutive spikes of
the output neuron) and in the accepting mode (a number is introduced in the system in the form
of the interval of time between the two spikes entering a designated neuron, and this number
is accepted if the computation halts). In the former case, SN P systems with only one neuron
behaving non-deterministically, choosing between two firing rules to apply, are sufficient. In the
latter case, deterministic systems are sufficient.

In the proofs of these results, we use SN P systems which can accumulate arbitrarily many
spikes inside. If we want to be “more realistic” and we impose a bound on the number of spikes
present in any neuron along a computation (if a neuron gets more spikes, then the computa-
tion aborts), then this restriction diminishes the power of our devices: we get in this case a
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characterization of semilinear sets of numbers.
By SN P systems with at most two neurons we also get a characterization of finite sets of

numbers.
Along the paper, many variants which deserve to be explored are mentioned, as well as more

precise open problems. In general, the idea of spiking (neurons) opens a new research vista in
membrane computing, and we believe that further investigations are worth carrying out in this
area.

In the next section we provide some information about the neuron behavior, then we give the
computability prerequisites used in the subsequent sections of the paper. Section 4 introduces
the spiking neural P systems. In Section 5 we illustrates the definition with four examples, and
we continue (Section 6) with a characterization of finite sets of numbers. In Section 7 we prove
that SN P systems are computationally complete (via simulating register machines), while in
Section 9 we give the characterization of semilinear sets of numbers by means of SN P systems
with a bounded number of spikes in the neurons. We end (Section 10) with a few comments
and suggestions for further investigations.

2 Spiking Neurons

We recall here from [1], [6], [7] some notions about the neural cell, mainly focusing on the electric
pulses a neuron is transmitting through its synapses; such a pulse is usually called a spike, or
action potential.

Figure 1: A neuron and its spiking

In Figure 1 (a drawing by Ramón y Cajal, one of the pioneers of neuroscience around 1900,
reproduced from [2]), an example of a neural action potential is schematically given altogether
with the main parts of a neuron – the cell itself (soma), the axon, the dendrites (a filamentous
bush around the soma, where the synapses are established with the endbulbs of the axons of
other neurons).
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The neuronal signals consist of short electrical pulses (that can be observed as suggested in
the figure by placing a fine electrode close to the soma or on the axon of a neuron) having an
amplitude of about 100 mV and typically a duration of 1-2 ms. The form of the pulse does not
change as the action potential propagates along the axon. A sequence of such impulses which
occur at regular or irregular intervals is called a spike train. Since all spikes of a given neuron
look alike, the form of the action potential does not carry any information. Rather, it is the
number and the timing of spikes what matter.

So, the size and the shape of a spike is independent of the input of the neuron, but the time
when a neuron fires depends on its input.

Action potentials in a spike train are usually well separated. Even with very strong input,
it is impossible to excite a second spike during or immediately after a first one. The minimal
distance between two spikes defines the refractory period of the neuron.

The contact of the axon of a neuron with the dendrites of another neuron is called a synapse.
The most common type of synapse in the vertebrate brain is a chemical synapse. When an action
potential arrives at a synapse, it triggers a complex chain of bio-chemical processing steps that
lead to a release of neurotransmitter from the presynaptic neuron into the postsynaptic neuron.
As soon as transmitter molecules have reached the postsynaptic side, they will be detected by
specialized receptors in the postsynaptic cell membrane, and through specific channels, the ions
from the extracellular fluid flow into the target cell. The ion influx, in turn, leads to a change
of the membrane potential at the postsynaptic site so that, in the end, the chemical signal is
translated into an electrical response. The voltage response of the postsynaptic neuron to a
presynaptic action potential is called the postsynaptic potential.

In Section 4, we will capture some of these ideas in the framework of neural-like P systems
as existing in the membrane computing literature, adapting the definition to the case of spiking.

3 Some Technical Prerequisites

We assume the reader to have some familiarity with language and automata theory, as well as
with membrane computing, so that we recall here only a few definitions and we establish the
notation we use; for further details we refer to [13] and [11], respectively (with the website of
membrane computing, [16], providing recent information about the field).

For an alphabet V , V ∗ is the free monoid generated by V with respect to the concatenation
operation and the identity λ (the empty string); the set of all nonempty strings over V , that is,
V ∗ − {λ}, is denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|. The family of recursively
enumerable languages is denoted by RE and the family of Turing computable sets of natural
numbers is denoted by NRE (it is the family of length sets of languages in RE).

We also use below the family NFIN , of finite sets of natural numbers, and SLIN1, the family
of semilinear sets of natural numbers (the subscript indicates that we work with one-dimensional
vectors, not with semilinear sets of vectors in general).

We do not give a definition of semilinear sets of numbers, but we mention that they are
the length sets of regular languages. In turn, regular languages are defined (among many other
possibilities) by means of regular expressions – which will be essentially used also in our main
definition in the next section. In short, such an expression over a given alphabet V is constructed
starting from λ and the symbols of V and using the operations of union, concatenation, and
Kleene +, using parentheses when necessary for specifying the order of operations. Specifically,
(i) λ and each a ∈ V are regular expressions, (ii) if E1, E2 are regular expressions over V , then
also (E1) ∪ (E2), (E1)(E2), and (E1)+ are regular expressions over V , and (iii) nothing else is a
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regular expression over V . With each expression E we associate a language L(E), defined in the
following way: (i) L(λ) = {λ} and L(a) = {a}, for all a ∈ V , (ii) L((E1)∪(E2)) = L(E1)∪L(E2),
L((E1)(E2)) = L(E1)L(E2), and L((E1)+) = L(E1)+, for all regular expressions E1, E2 over V .
Non-necessary parentheses are omitted when writing a regular expression, and (E)+ ∪ {λ} is
written in the form (E)∗.

A language L ⊆ V ∗ is said to be regular if there is a regular expression E over V such that
L(E) = L.

In the universality proof from Section 7 we use the characterization of NRE by means of
register machines, hence we introduce here also this notion – first, in the non-deterministic,
generative form.

A register machine is a construct M = (m,H, l0, lh, I), where m is the number of registers, H
is the set of instruction labels, l0 is the start label (labeling an ADD instruction), lh is the halt
label (assigned to instruction HALT), and I is the set of instructions; each label from H labels
only one instruction from I, thus precisely identifying it. The instructions are of the following
forms:

• l1 : (ADD(r), l2, l3) (add 1 to register r and then go to one of the instructions with labels
l2, l3),

• l1 : (SUB(r), l2, l3) (if register r is non-empty, then subtract 1 from it and go to the instruc-
tion with label l2, otherwise go to the instruction with label l3),

• lh : HALT (the halt instruction).

A register machine M computes a number n in the following way: we start with all registers
empty (i.e., storing the number zero), we apply the instruction with label l0 and we proceed to
apply instructions as indicated by the labels (and made possible by the contents of registers);
if we reach the halt instruction, then the number n stored at that time in the first register is
said to be computed by M . The set of all numbers computed by M is denoted by N(M). It
is known (see, e.g., [9]) that register machines (even with a small number of registers, but this
detail is not relevant here) compute all sets of numbers which are Turing computable, hence
they characterize NRE.

Without loss of generality, we may assume that in the halting configuration, all registers
different from the first one are empty, and that the output register is never decremented during
the computation, we only add to its contents.

A register machine can also work in the accepting mode: a number n is introduced in the
first register (all other registers are empty) and we start computing with the instruction with
label l0; if the computation eventually halts, then the number n is accepted.

Register machines are universal also in the accepting mode; moreover, this is true even for
deterministic machines, having ADD rules of the form l1 : (ADD, l2, l3) with l2 = l3: after adding
1 to register r we pass precisely to one instruction, without any choice (in such a case, the
instruction is written in the form l1 : (ADD, l2)).

Again, without loss of generality, we may assume that in the halting configuration all registers
are empty.

We also recall here the initial definition of a neural-like P system as considered in [8], [11] so
that we can use it (with some modifications) in the next sections. The basic idea is to consider
cells related by synapses and behaving according to their states; the states can model the firing
of neurons, depending on the inputs, on the time of the previous firing, etc.
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Formally, a neural-like P system, of degree m ≥ 1, is a construct

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O is a finite non-empty alphabet (of objects, usually called impulses);

2. σ1, . . . , σm are cells (also called neurons), of the form

σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ m,

where:

a) Qi is a finite set (of states);

b) si,0 ∈ Qi is the initial state;

c) wi,0 ∈ O∗ is the initial multiset of impulses of the cell;

d) Ri is a finite set of rules of the form sw → s′xygozout, where s, s′ ∈ Qi, w, x ∈ O∗,
ygo ∈ (O × {go})∗, and zout ∈ (O × {out})∗, with the restriction that zout = λ for all
i ∈ {1, 2, . . . , m} different from i0;

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses among cells);

4. i0 ∈ {1, 2, . . . ,m} indicates the output cell.

The standard rules used in this model are of the form sw → s′w′, where s, s′ are states and
w, w′ are multisets of impulses. The mark “go” assigned to some elements of w′ means that
these impulses have to leave immediately the cell and pass to the cells to which we have direct
links through synapses. The communication among the cells of the system can be done in a
replicative manner (the same object is sent to all adjacent cells), or in a non-replicative manner
(the impulses are sent to only one neighboring cell, or can be distributed non-deterministically
to the cells to which we have synapses). The objects marked with “out” (they can appear
only in the cell i0) leave the system. The computation is successful only if it halts, reaches a
configuration where no rule can be applied.

The sequence of objects (note that they are symbols from an alphabet) sent to the environ-
ment from the output cell is the string computed by a halting computation, hence the set of all
strings of this type is the language computed/generated by the system.

We will modify below several ingredients of a neural-like P system as above, bringing the
model closer to the way the neurons communicate by means of spikes.

We close this section by mentioning the following convention: when evaluating or comparing
the power of two number generating/accepting devices, the number 0 is ignored; this corresponds
to a frequently made convention in grammars and automata theory, where the empty string λ
is ignored when comparing two language generating/accepting devices.

4 Spiking Neural P Systems

We pass now from the previous definition of a neural-like P system to a model which makes
explicit the restriction to work only with spikes. This means that we have to use only one
impulse, hence symbol, identifying a generic electrical neural impulse, a “quanta” of electricity
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used in neural interaction. We will also remove the states of neurons; the firing will be controlled
by the number of spikes present in a neuron, and by the time elapsed since the previous spiking,
in a very simple way; we will also relax the definition of successful computations, removing the
halting condition (but adding a sort of simplicity condition: the output neuron can spike only
twice).

Specifically, we consider a spiking neural P system (in short, an SN P system), of degree
m ≥ 1, in the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

a) ni ≥ 0 is the initial number of spikes contained by the cell;

b) Ri is a finite set of rules of the following two forms:

(1) E/ar → a; t, where E is a regular expression over O, r ≥ 1, and t ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any rule

E/ar → a; t of type (1) from Ri;

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses among cells);

4. i0 ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are firing (we also say spiking) rules: provided that the contents of the
neuron (the number of spikes present in it) is described by the regular expression E (we return
immediately to this aspect), r spikes are consumed (this corresponds to the result of the quotient
of language L(E) with respect to ar, thus motivating the notation E/ar from the firing rules),
the neuron is fired, and it produces a spike which will be sent to other neurons after t time units
(a global clock is assumed, marking the time for the whole system, hence the functioning of the
system is synchronized).

We have here two important actions which can take place in a step: getting fired and spiking.
A neuron gets fired when using a rule E/ar → a; t, and this is possible only if the neuron

contains n spikes such that an ∈ L(E) and n ≥ r. This means that the regular expression
E “covers” exactly the contents of the neuron. (For instance, a rule a(aa)+/a3 → a; 1 can be
applied to a neuron which contains seven copies of a, because a7 ∈ L(a(aa)+) = {a2n+1 | n ≥ 1},
and then only four spikes remain in the neuron; now, the rule cannot be applied again – in
general, the rule a(aa)+/a3 → a; 1 cannot be applied if the neuron contains any even number of
spikes.)

This is an important detail concerning the use of spiking rules, and we stress it again,
especially because it contrasts the “standard” way of using rules in P systems, by rewriting
parts of a multiset, in the maximally parallel mode both locally (in each compartment) and
globally (at the level of the system). Here, at the level of each neuron we work in a sequential
mode, with at most one rule used in each step, covering all spikes present in the neuron. Still, we
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have a maximal parallelism at the level of the system, in the sense that in each step all neurons
which can evolve (use a rule) have to do it. We will come back to this aspect.

Now, about spiking. The use of a rule E/ar → a; t in a step q means firing in step q and
spiking in step q + t. That is, if t = 0, then the spike is produced immediately, in the same step
when the rule is used. If t = 1, then the spike will leave the neuron in the next step, and so on.
In the interval between using the rule and releasing the spike, the neuron is assumed closed (in
the refractory period), hence it cannot receive further spikes, and, of course, cannot fire again.
This means that if t ≥ 1 and another neuron emits a spike in any moment q, q + 1, . . . , q + t− 1,
then its spike will not pass to the neuron which has used the rule E/ar → a; t in step q. In the
moment when the spike is emitted, the neuron can receive new spikes (it is now free of internal
electricity and can receive new electrical impulses). This means that if t = 0, then no restriction
is imposed, the neuron can receive spikes in the same step when using the rule. Similarly, the
neuron can receive spikes in moment t, in the case t ≥ 1.

If a neuron σi spikes, its spike is replicated in such a way that one spike is sent to all neurons
σj such that (i, j) ∈ syn, and σj is open at that moment. If a neuron σi fires and either it has
no outgoing synapse, or all neurons σj such that (i, j) ∈ syn are closed, then the spike of neuron
σi is lost; the firing is allowed, it takes place, but it produces no spike.

The rules of type (2) are forgetting rules: s spikes are simply removed (“forgotten”) when
applying as → λ. Like in the case of spiking rules, the left hand side of a forgetting rule must
“cover” the contents of the neuron, that is, as → λ is applied only if the neuron contains exactly
s spikes.

As defined above, the neurons can contain several rules, without restrictions about their left
hand sides. More precisely, it is allowed to have two spiking rules E1/ar1 → a; t1, E2/ar2 → a; t2
with L(E1) ∩ L(E2) 6= ∅ (but not forgetting rules as → λ with as ∈ L(Ei), i = 1, 2). This
leads to a non-deterministic way of using the rules. If we use the spiking neural P systems in
a generative mode (starting from the initial configuration, we evolve non-deterministically, and
collect all results of all successful computations – we define immediately the used terms), then
we cannot avoid the non-determinism (deterministic systems will compute only singleton sets).
In the accepting mode of using our systems, as considered in Section 8, the non-determinism is
no longer necessary.

However, we have imposed a minimal determinism-like restriction (we can also consider this
as a coherence condition: either firing or forgetting, without being possible to chose among these
two actions): no forgetting rule can be interchanged with a spiking rule. Thus, only in the case
of spiking we allow branchings.

As suggested above, the rules are used in the non-deterministic manner, in a maximally
parallel way at the level of the system: in each step, all neurons which can use a rule, of any
type, spiking or forgetting, have to evolve, using a rule.

A spike emitted by a neuron i will pass immediately to all neurons j such that (i, j) ∈ syn
and are open, that is, the transmission of a spike takes no time, the spikes are available in the
receiving neurons already in the next step.

The distribution of spikes in neurons and the states of neurons corresponding to the spiking
intervals specified by the last rules used in each neuron (the open-close status and the time since
the neurons were closed, depending on the rule used) define the configuration of the system.
The initial configuration is defined by the number of initial spikes, n1, . . . , nm, with all neurons
being open (no rule was used before).

Using the rules in this way, we pass from a configuration of the system to another configura-
tion; such a step is called a transition; for two configuration C1, C2 of Π we denote by C1 =⇒ C2

the fact that there is a direct transition from C1 to C2 in Π. The reflexive and transitive clo-
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sure of the relation =⇒ is denoted by =⇒∗. A sequence of transitions, starting in the initial
configuration, is called a computation.

With a computation we can associate several results. One possibility is the standard one in
membrane computing: to consider only halting computations (reaching a configuration where no
rule can be used) and to count the number of spikes present in the output neuron in the halting
configuration, or sent to the environment by the output neuron during a halting computation.
However, this is not in the style of spiking neurons, that is why we will here consider outputs
related to the time when certain events take place. One idea is to consider the moments when
the output neuron, that with label i0, spikes (not when it fires), and already we have two
possibilities: if neuron i0 spikes at times t1, t2, . . ., then (i) either the set of numbers t1, t2, . . .
can be considered as computed by Π, or (ii) the set of intervals between spikes, ts − ts−1, s ≥ 2,
can be the set computed by Π. Another possibility is to take a sequence of symbols/bits 0 and 1
as the result of a computation, with 0 associated with a moment when the output neuron does
not spike and 1 associated with a spiking step. Finite and also infinite sequences of bits can be
obtained in this way.

All these possibilities look very attractive, but their study remains as a research topic1. In
what follows, we consider a further possibility, rather relaxed: we do not care whether or not
the computation halts, but we only request that the output neuron spikes exactly twice during
the computation. Then, the number of steps elapsed between the two spikes is the number
computed by the system along that computation.

We denote by N2(Π) the set of numbers computed in this way by a system Π, with
the subscript 2 reminding of the way the result of a computation is defined, and by
Spik2Pm(rulek, consp, forgq) the family of all sets N2(Π) computed as above by spiking neural
P systems with at most m ≥ 1 neurons, using at most k ≥ 1 rules in each neuron, with all
spiking rules E/ar → a; t having r ≤ p, and all forgetting rules as → λ having s ≤ q. When one
of the parameters m, k, p, q is not bounded, then it is replaced with ∗.

5 Examples

We illustrate here the previous definitions with several examples, most of them also useful later.
The first example concerns the system Π1 given in a graphical form in Figure 2 – and in this

way we also introduce a standard way to pictorially represent a configuration of an SN P system,
in particular, the initial configuration. Specifically, each neuron is represented by a “membrane”
(a circle or an oval), marked with a label and having inside both the current number of spikes
(written explicitly, in the form an for n spikes present in a neuron) and the evolution rules; the
synapses linking the neurons are represented by arrows; besides the fact that the output neuron
will be identified by its label, i0, it is also suggestive to draw a short arrow which exits from it,
pointing to the environment.

Using this example, we also introduce the following convention: if a spiking rule is of the
form E/ar → a; t, with L(E) = {ar} (this means that such a rule is applied when the neuron
contains exactly r spikes – and all these spikes are consumed), then we will write this rule in
the simpler form ar → a; t.

In the system Π1 we have three neurons, with labels 1, 2, 3; neuron 3 is the output one. In
the initial configuration we have spikes in neurons 1 and 3, and these neurons fire already in the

1The case of infinite binary sequences is investigated in the forthcoming paper “Infinite spike trains in spiking
neural P systems”, by Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg.
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first step. The spike of neuron 3 exits the system, so the number of steps from now until the
next spiking of neuron 3 is the number computed by the system. After firing, neuron 3 remains
empty, so it cannot spike again before receiving a new spike. In turn, neuron 2 cannot fire until
collecting exactly k spikes.
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Figure 2: A simple example of an SN P system

After firing, neuron 1 will be closed/blocked for the next two steps; in the third step it will
release its spike, sending it to neuron 2, and in step 3 will fire again. Thus, neuron 1 fires in
every third step, consuming one of the spikes: any number n ≥ 1 of spikes is “covered” by the
regular expression a+. In the step 3k, neuron 2 will receive the kth spike emitted by neuron 1,
hence in the next moment, 3k + 1, it will fire. The delay between firing and spiking is of one
time unit for neuron 2, hence its spike will reach neuron 3 in step 3k + 2, meaning that neuron
3 spikes again in step 3k + 3. Therefore, the computed number is (3k + 3)− 1 = 3k + 2.

The computation continues until consuming (and thus moving to neuron 2) all spikes from
neuron 1, hence further 3(k − 1) steps. However, neurons 2 and 3 will never fire again. If we
have at least one more spike in neuron 1, then neuron 2 accumulates again k spike, will fire for
the second time, and the spike sent to neuron 3 will allow this neuron to spike for the third time.
Such an event would make the computation unacceptable, we will get then no result.

The next example is presented in Figure 3 – we denote this SN P system by Π2.
In the beginning, only neurons 1, 2, 3, and 7 (which is the output neuron) contain spikes,

hence they fire in the first step – and spike immediately. In particular, the output neuron
spikes, hence we have to count the number of steps until the next spike, to define the result of
the computation.

Note that in the first step we cannot use the forgetting rule a → λ in neurons 1, 2, 3, because
we have more than one spike present in each neuron.

The spikes of neurons 1, 2, 3 will pass to neurons 4, 5, 6. In step 2, neurons 1, 2, 3 contain
no spike inside, hence will not fire, but neurons 4, 5, 6 fire. Neurons 5, 6 have only one rule,
but neuron 4 behaves non-deterministically, choosing between the rules a → a; 0 and a → a; 1.
Assume that for m ≥ 0 steps we use here the first rule. This means that three spikes are sent to
neuron 7, while each of neurons 1, 2, 3 receives two spikes. In step 3, neurons 4, 5, 6 cannot fire,
but all neurons 1, 2, 3 fire again. After receiving the three spikes, neuron 7 uses its forgetting
rule and gets empty again. These steps can be repeated arbitrarily many times.

In order to fire again neuron 7, we have to use sometimes the rule a → a; 1 of neuron 4.
Assume that this happens in step t (it is easy to see that t = 2m + 2). This means that at
step t only neurons 5, 6 emit their spikes. Each of neurons 1, 2, 3 receives only one spike – and
forgets it in the next step, t + 1. Neuron 7 receives two spikes, and fires again, thus sending
the second spike to the environment. This happens in moment t + 1 = 2m + 2 + 1, hence the

10
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a2

a2 → a; 0
a → λ

Figure 3: An SN P system generating all even natural numbers

computed number is 2m+2 for some m ≥ 0. The spike of neuron 4 (the one “prepared-but-not-
yet-emitted” there by using the rule a → a; 1 in step t) will reach neurons 1, 2, 3, and 7 in step
t + 1, hence it can be used only in step t + 2; in step t + 2 neurons 1, 2, 3 forget their spikes and
the computation halts. The spike from neuron 7 remains unused, there is no rule for it. Note
that we cannot avoid using the forgetting rules a → λ from neurons 1, 2, 3: without such rules,
the spikes of neurons 5, 6 from step t will wait unused in neurons 1, 2, 3 and, when the spike
of neuron 4 will arrive, we will have two spikes, hence the rules a2 → a; 0 from neurons 1, 2, 3
would be enabled again and the system will spike again.

Table 1 presents the computation of number 4 by the system Π2; in each step, for each
neuron we indicate in the first line the used rule and, in the second line, the spikes present in
the neuron, with a dash used when no rule is applied and/or no spike is present; an exclamation
mark indicates the spikes of the output neuron; the newly received spikes have a subscript which
indicates their originating neuron.

We formally conclude that:

N2(Π2) = {2n | n ≥ 1} ∈ Spik2P7(rule2, cons2, forg3).

The next example is given both in a pictorial way, in Figure 4, and formally:

Π3 = ({a}, σ1, σ2, σs, syn, 3), with
σ1 = (2, {a2/a → a; 0, a → λ}),
σ2 = (1, {a → a; 0, a → a; 1}),
σ3 = (3, {a3 → a; 0, a → a; 1, a2 → λ}),

syn = {(1, 2), (2, 1), (1, 3), (2, 3)}.

This system works as follows. All neurons can fire in the first step, with neuron 2 choosing
non-deterministically between its two rules. Note that neuron 1 can fire only if it contains two
spikes; one spike is consumed, the other remains available for the next step.
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Table 1: A computation in the system from Figure 3

Step 0 1 2 3 4 5 6
Neuron
1 a2 → a; 0 — a2 → a; 0 — a → λ a → λ

aa — a4a5 — a5 a4 —
2 a2 → a; 0 — a2 → a; 0 — a → λ a → λ

aa — a4a5 — a5 a4 —
3 a2 → a; 0 — a2 → a; 0 — a → λ a → λ

aa — a4a6 — a6 a4 —
4 — a → a; 0 — a → a; 1 — —

— a1 — a1 — — —
5 — a → a; 0 — a → a; 0 — —

— a2 — a2 — — —
6 — a → a; 0 — a → a; 0 — —

— a3 — a3 — — —
7 a2 → a; 0 ! — a3 → λ — a2 → a; 0 ! —

aa — a4a5a6 — a5a6 a4 a

Both neurons 1 and 2 send a spike to the output neuron, 3; these two spikes are forgotten
in the next step. Neurons 1 and 2 also exchange their spikes; thus, as long as neuron 2 uses
the rule a → a; 0, the first neuron receives one spike, thus completing the needed two spikes for
firing again.
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Figure 4: An SN P system generating all natural numbers greater than 1

However, at any moment, starting with the first step of the computation, neuron 2 can
choose to use the rule a → a; 1. On the one hand, this means that the spike of neuron 1 cannot
enter neuron 2, it only goes to neuron 3; in this way, neuron 2 will never work again because
it remains empty. On the other hand, in the next step neuron 1 has to use its forgetting rule
a → λ, while neuron 3 fires, using the rule a → a; 1. Simultaneously, neuron 2 emits its spike,
but it cannot enter neuron 3 (it is closed this moment); the spike enters neuron 1, but it is
forgotten in the next step. In this way, no spike remains in the system. The computation ends
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with the expelling of the spike from neuron 3. Because of the waiting moment imposed by the
rule a → a; 1 from neuron 3, the two spikes of this neuron cannot be consecutive, but at least
two steps must exist in between.

Thus, we conclude that (remember that number 0 is ignored)

N2(Π3) = N− {1} ∈ Spik2P3(rule3, cons3, forg2).

At the price of using one more neuron, we can compute all natural numbers. Such a system
is given in Figure 5 (it is denoted by Π4 and its output neuron is 4). The task to check that
N2(Π4) = N (again, 0 is ignored) is left to the reader.
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a2 → a; 0
a → λ
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a2 → a; 0
a → λ

a2

a2 → a; 0
a2 → a; 1

a2

a2 → a; 0
a3 → λ

Figure 5: An SN P system generating all natural numbers

The last three examples will be useful in the next sections. Moreover, many of the proofs
which follow are based on explicit constructions, hence further examples can be found in the
sequel.

6 A Characterization of NFIN

In the continuation of the examples before, where an SN P system with three neurons was
presented which computes an infinite set of numbers, let us examine the power of systems with
one or two neurons only.

We start with the observation that by using any type of rules, spiking or forgetting rules,
in a neuron σi we diminish the number of spikes from σi. In general, the number of spikes can
increase in the whole system, because the spikes are replicated in the case of multiple synapses
starting from a given neuron. However, if we have only one neuron in the system, then no
replication is possible, hence each computation lasts at most as many steps as the number of
spikes initially present in the neuron.

Consequently, SN P systems with only one neuron can only compute finite sets of numbers.
Interesting enough, any finite set can be computed by a one-neuron system. Indeed, let us take a
finite set of numbers, F = {n1, n2, . . . , nk}, and construct the system ΠF with only one neuron,
containing initially two spikes, and the following rules:

a2a → a; 0,
a → a; ni, for each i = 1, 2, . . . , k.
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The system spikes in the first step by means of the rule a2/a → a; 0, then, because one spike
remains inside, it fires again the next step, using any of the rules a → a; ni. This means that
the next spike is sent out in step ni + 1, hence N2(ΠF ) = F .

What about systems consisting of two neurons? One of them should be the output one, and
the output neuron can spike only twice. This means that this neuron can increase the number
of spikes in the system at most with two. The other neuron does not have a synapse to itself,
hence, like in the case of single-neurons systems, it cannot use more rules than the number of
spikes initially present in it, maybe plus two, those possibly received from the output neuron.
This means that all computations are of a bounded length, hence the set of numbers computed
by the system is again finite.

We synthesize these observations in the form of a theorem, mainly in view of the third
example from the previous section: this is the best result of this type (in what concerns the
number of neurons):

Theorem 6.1 NFIN = Spik2P1(rule∗, cons1, forg0) = Spik2P2(rule∗, cons∗, forg∗) =
Spik2P2(rule∗, cons∗, forg∗).

From these very small systems, let us now jump to the most general case, without any
restriction on the number of neurons, or on other parameters.

7 Computational Completeness

The next inclusions follow directly from the definitions, with the inclusion in NRE provable in
a straightforward manner (or, we can invoke for it the Turing-Church thesis):

Lemma 7.1 Spik2Pm(rulek, consp, forgq) ⊆ Spik2Pm′(rulek′ , consp′ , forgq′) ⊆
Spik2P∗(rule∗, cons∗, forg∗) ⊆ NRE, for all m′ ≥ m ≥ 1, k′ ≥ k ≥ 1, p′ ≥ p ≥ 1, q′ ≥ q ≥ 0.

Surprisingly enough, taking into account the restrictive form of our systems, the spiking
neural P systems prove to be computationally universal:

Theorem 7.1 Spik2P∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 3.

Proof. In view of Lemma 7.1, we only have to prove the inclusion NRE ⊆ Spik2P∗(rule2,
cons3, forg3). To this aim, we use the characterization of NRE by means of register machines.

Let M = (m,H, l0, lh, I) be a register machine, having the properties specified in Section 3:
the result of a computation is the number from register 1 and this register is never decremented
during the computation.

We construct a spiking neural P system Π as follows.
Instead of specifying all technical (and difficult to follow) details of the construction, we

present the three main types of modules of the system Π, with the neurons, their rules, and their
synapses represented graphically. All neurons are initially empty, with the single exception of
the neuron with label l0 (the label of the initial instruction of M), which contains exactly two
spikes (two copies of a).

What we want to do is to have Π constructed in such a way (1) to simulate the register
machine M , and (2) to have its output neuron spiking only twice, at an interval of time which
corresponds to a number computed by M .

In turn, simulating M means to simulate the ADD instructions and the SUB instructions.
Thus, we will have a type of modules associated with ADD instructions, one associated with
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SUB instructions, and one dealing with the spiking of the output neuron (a FIN module). The
modules of the three types are given in Figures 6, 7, 8, respectively. The neurons appearing in
these figures have labels l1, l2, l3, as in the instructions from I, labels 1, 2, . . . ,m associated with
the registers of M , l′1, l′′1 , l′′1 associated with the label l1 identifying ADD and SUB instructions
from I, br (from “before r”, because this neuron is used by all ADD instructions when sending
a spike to neuron r), f1, f2, f3, f4, f5, f6, used by the FIN module, as well as out, labeling the
output neuron.
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a2 → a; 0
a → λ

l′1 l′′1 l′′′1

br

a → a; 0

a → a; 0 a → a; 1
a → a; 0
a → a; 1

l2 l3

a2 → a; 0
a → λ

a2 → a; 0
a → λ

r

Figure 6: Module ADD (simulating l1 : (ADD(r), l2, l3))

Before describing the work of these modules, let us remember that the labels are injectively
associated with the instructions of M , hence each label precisely identifies one instruction, either
an ADD or a SUB one, with the halting label having a special situation – it will be dealt with
by the FIN module.

Simulating an ADD instruction l1 : (ADD(r), l2, l3) – module ADD (Figure 6).
The initial instruction, that labeled with l0, is an ADD instruction. Assume that we are

in a step when we have to simulate an instruction l1 : (ADD(r), l2, l3), with two spikes present
in neuron l1 (like in the initial configuration) and no spike in any other neuron, except those
neurons associated with the registers. Having two spikes inside, neuron l1 gets fired. Its spike
will simultaneously go to four neurons, l′1, l′′1 , l′′′1 , and br.

In the next step, both neurons l′′1 and br will send a spike to neuron r, the one which
corresponds to register r of M . In this way, the contents of neuron r increases by two. In each
moment, if register r has value n, then neuron r will contain 2n spikes. In Figure 6, neuron r
contains no rules, but, as we will see immediately, the neurons associated with registers have
two rules each, used when simulating the SUB instructions, but both these rules need an odd
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number of spikes to be applied (this is true also for the module FIN, which only deals with the
neuron associated with register 1). Therefore, during the simulation of an ADD instruction,
neuron r just increases by 2 its contents, and never fires.

Now, the problem is to pass non-deterministically to one of the instructions with labels l2 and
l3, that is, in our system we have to ensure the firing of neurons l2 or l3, non-deterministically
choosing one of them. To this aim, we use the non-determinism of the rules in neuron l′1. One
of them will be used, thus consuming the unique spike existing here. If we use the rule a → a; 0,
then both neurons l2, l3 receive a spike from l′1. For l3 this is the unique spike it receives now
(note that neuron l′′′1 fires now but its spike will leave one step later), hence in the next step
the forgetting rule of neuron l3 should be used. Instead, neuron l2 receives two spikes, one from
neuron l′1 and one from neuron l′′1 , hence in the next step it is fired.

However, if instead of rule a → a; 0 we use the rule a → a; 1 of neuron l′1 (note that the only
difference is the time of spiking), then it is l2 which receives only one spike, and immediately it
“forgets” it, while in the next step neuron l3 receives two spikes, and fires.
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l1
a2 → a; 0
a → λ

l′1 l′′1

a → a; 0 a → a; 1r

a(aa)+/a3 → a; 0

a → a; 1

l2
a2 → a; 0
a → λ

l3

a2 → a; 0
a → λ

Figure 7: Module SUB (simulating l1 : (SUB(r), l2, l3))

Therefore, from firing neuron l1, we pass to firing non-deterministically one of neurons l2, l3,
while also increasing by 2 the number of spikes from neuron r.

Simulating a SUB instruction l1 : (SUB(r), l2, l3) – module SUB (Figure 7).
Let us examine now Figure 7, starting from the situation of having two spikes in neuron l1

and no spike in other neurons, except neuron r, which holds an even number of spikes (half of this
number is the value of the corresponding register r). The spike of neuron l1 goes immediately
to three neurons, l′1, l′′1 , and r. Neuron l′1 will send in the next step a spike to neuron l2, while
neuron l′′1 will send a spike to neuron l3 one step later.
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A similar situation appears in neuron r: because it contains now an odd number of spikes,
it gets fired, and it will either spike immediately, if the first rule is used (a(aa)+/a3 → a; 0),
or one step later, if the second rule is used (a → a; 1). In turn, the first rule is used if and
only if neuron r contains at least three spikes; one spike has just came from neuron l1, hence
at least two existed in the neuron, which means that the value of register r was at least one.
The two spikes which reach neuron l2 make this neuron fire, as requested by simulating the SUB
instruction. The spike from neuron l3 will be removed by the local forgetting rule. If in neuron
r there is only one spike (this corresponds to the case when register r is empty), then the second
rule is used, hence the neuron spikes at the same time with l′′1 , in the next step. This means
that neuron l2 receives only one spike (and removes it), while neuron l3 receives two, and fires.

The simulation of the SUB instruction is correct, we started from l1 and we ended in l2 if
the register was non-empty and decreased by one, and in l3 if the register was empty.

Note that there is no interference between the neurons used in the ADD and the SUB
instructions, other than correctly firing the neurons l2, l3 which may label instructions of the
other kind. In particular, the ADD instructions do not use any rule for handling the spikes
of neurons 1, 2, . . . , m. The only neurons used by several rules are those which correspond to
registers and neuron br, used as a sort of interface before sending a spike to neuron r; then,
each neuron r associated with a register which is subject of a SUB instruction sends a spike to
several, possibly to all, neurons with labels l ∈ H – but only one of these neurons also receives
at the same time a spike from the corresponding neurons l′1, l′′2 , hence only the correct neuron
fires, all others forget immediately the unique spike.

Ending a computation – module FIN (Figure 8).
Assume now that the computation in M halts, which means that the halting instruction

is reached. For Π this means that the neuron lh gets two spikes and fires. At that moment,
neuron 1 contains 2n spikes, for n being the contents of register 1 of M . The spike of neuron lh
reaches immediately neurons 1, f1, f5. This means that neuron 1 contains now an odd number
of spikes, and it can fire. It is important to remember that this neuron was never involved in a
SUB instruction, hence it does not contain any rule as those from Figure 7.

Let t be the moment when neuron lh fires.
At moment t + 1, neurons f1, f5, and 1 fire and all of them spike immediately. The spiking

of neuron 1 means subtracting one from the value of the associated register: by using the rule
a3(aa)+/a2 → a; 0, two copies of a are consumed (hence the number of spikes remains odd, the
rule can be used again next step). The spike of neuron 1 goes to four neurons, f3, f4, f5, and
f6. This means that in step t + 1 neuron f6 receives three spikes (from neurons f1, f5, and 1),
which are immediately forgotten.

In step t + 2, neurons f2, f3, f5, and 1 fire and spike; again neuron f6 receives three spikes,
which are forgotten immediately. The spike from neuron f2 reaches the output neuron, out,
which in step t + 3 will fire and spike. This is the first spike of the output neuron. The number
of steps from this spike to the next one is the number computed by the system.

Let us see how the neurons f3, f4 interplay: in each step, each of them receives a spike from
neuron 1. We start with neuron f3 fired first; it sends a spike to neuron f6 and one to the
companion neuron f4. This means that in the next step neuron f4 is fired (he has received one
spike from 1 and one from f3), while neuron f3, having only the spike from neuron 1, removes
it. In the next step the roles of neurons f3, f4 are interchanged. This means that in each step
one of them fires and sends a spike to the other (and one to neuron f6), while the other only
forgets one spike.

Then, let us observe that neuron 1 sends in each moment two spikes towards neuron f6, one
reaching immediately the target, the other one with one step delay, because it passes through

17



º

¹

·

¸

º

¹

·

¸

'

&

$

%

º

¹

·

¸

'

&

$

%

'

&

$

%

'

&

$

%

º

¹

·

¸

'

&

$

%

¢
¢
¢
¢
¢
¢
¢
¢¢̧

´
´

´
´́3

A
A
A
A
A
AAU

@
@@R

-

³³³³³³³³³³³³³³³³³³³1

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡µ

B
B
B
B
B
B
B
B
B
B
BBN


À 


Á

-

Z
Z

Z
Z

Z~

S
S

S
S
Sw


À

¶
¶

¶
¶

¶
¶

¶
¶¶/

J
J

J
J

J
J

JĴ
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a3 → a; 0

lh

a2 → a; 0
a → λ

f5

a → a; 0

f1

a → a; 0

f2
a → a; 0

out

-a → a; 0

f3

a2 → a; 0
a → λ

a2 → a; 0
a → λ

f6

a3 → λ
a2 → a; 0

Figure 8: Module FIN (ending the computation)

neuron f5. In turn, neuron f5 never contains more than one spike, because the spike of neuron
lh reaches it in the first step and those from neuron 1 in the subsequent steps.

This means that the process of removing two spikes from neuron 1 continues, iteratively,
without having neuron f6 spiking, until using the rule a3 → a; 0. This is the last time when
neuron 1 fires, hence this is step t + n (for 2n being the initial contents of neuron 1). In the
next step, t + n + 1, one of neurons f3, f4 still fires, because it has two spikes, and the same
with neuron f5. No other neuron fires in this step. This means that neuron f6 receives only two
spikes, and this makes it spike in the next step, t + n + 2. This is the only spiking in this step,
all other neurons are empty.

In step t + n + 3 also the output neuron spikes, and this ends the computation, the system
contains no spike.

The interval between the two spikes of neuron out is (t+n+3)−(t+3) = n, exactly the value
of register 1 of M in the moment when its computation halts. Consequently, N2(Π) = N(M)
and this completes the proof. 2

The previous construction contains only a few neurons which do not spike immediately, but
their role in the correct functioning of the system is essential. Also the forgetting rules are
crucial in this proof. It is an interesting open problem which is the power of spiking neural P
systems without forgetting rules; are they still universal? Another (standard) open problem is
whether or not the parameters used in the theorem are optimal, or they can be improved. Of
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course, systems with only one rule in each neuron are deterministic, hence for such systems we
have to look for other types of results of computations, e.g., the infinite sequence of bits marking
the spiking of the output neuron. However, in what concerns the number of neurons behaving
non-deterministically, a spectacular (especially by its metaphoric interpretation) result can be
obtained:

Corollary 7.1 Each set from NRE can be computed by an SN P system Π having only one
neuron with rules which can be used non-deterministically.

Proof. It is enough to observe that we have non-deterministic neurons only in the module ADD
– this is the case with neuron l′1. Let us “unify” all these neurons for all ADD instructions, in
the form of a neuron lndet containing the rules

a → a; 0, a → a; 1,

with synapses (l1, lndet) for all instructions l1 : (ADD(r), l2, l3) in the register machine we want to
simulate, and (lndet, l) for all l ∈ H. When starting to simulate any instruction l1 : (ADD(r), l2, l3),
neuron lndet receives a spike, fires, and either spikes immediately, or in the next step. The spike
is sent to all neurons l ∈ H, but it meets another spike only in one neuron: l2 if lndet spikes
immediately and l3 if it spikes in the next step. In all neurons different from these neurons, the
spike is forgotten. The system obtained in this way is clearly equivalent with the one constructed
in the proof of Theorem 7.1 and it contains only one non-deterministic neuron. 2

This result can have a nice interpretation: it is sufficient for a “brain” (in the form of an
SN P system) to have only one neuron which behaves non-deterministically in order to achieve
“complete (Turing) creativity”.

Now, in what concerns the number of spikes consumed for firing and the number of forgotten
spikes, the problem remains whether or not the value 3 from the theorem can be decreased.
Finally, it would be interesting to have universality results for systems with a bounded number
of neurons, maybe paying in other parameters, such as the number of rules in neurons.

The previous construction can easily be modified – actually, simplified – in order to obtain
an universality proof for the case where the result of a computation is defined as the number
of spikes present in the output neuron in the last configuration of a halting computation (in
this case we cannot avoid imposing the halting condition, because we have to make sure that
no further spike will be added to the output): we just replace the module FIN with the module
from Figure 9.
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a3(aa)+/aa → a; 0
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a2 → a; 0

a → λ
out

Figure 9: Module FIN in the case of counting the number of the spikes

When the halting instruction of the register machine M is reached, the neuron labeled lh
sends a spike to neuron 1, which has now 2n + 1 spikes inside, and can start to send spikes to
neuron out. Exactly as in the proof of Theorem 7.1, the spiking of neuron 1 corresponds to
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decreasing by one the first register of M , hence the number of spikes accumulated in neuron out
is equal to the value of register 1 in the end of a computation of M .

If we add the rule a → a; 0 to neuron out, then in each step, after receiving a spike from
neuron 1, neuron out spikes, hence in this way we obtain the result in the environment.

8 Spiking Neural P Systems Working in the Accepting Mode

An SN P system can be also used in the accepting mode. We consider here the following way of
introducing the number to be accepted, again in the spirit of spiking neurons, with the time as
the main data support: the special neuron i0 is used now as an input neuron, which can receive
spikes from the environment of the system (in the graphical representation an incoming arrow
will indicate the input neuron); we assume that exactly two spikes are entering the system; the
number n of steps elapsed between the two spikes is the one analyzed; if, after receiving the two
spikes, the system halts (not necessarily in the moment of receiving the second spike), then the
number n is accepted. We denote by Nacc(Π) the set of numbers accepted by a system Π, and
by SpikaccPm(rulek, consp, forgq) the family of sets of this form corresponding to the family
Spik2Pm(rulek, consp, forgq).

In the accepting mode we can impose the restriction that in each neuron, in each time
unit at most one rule can be applied, hence that the system behaves deterministically. When
considering only deterministic SN P systems, the notation SpikaccPm(rulek, consp, forgq) will
get a letter “D” in front of it.

Of course, inclusions as those in Lemma 7.1 are valid both for deterministic and non-
deterministic accepting SN P systems, and we also have the inclusion DSpikaccPm(rulek,
consp, forgq) ⊆ SpikaccPm(rulek, consp, forgq), for all m, k, p, q (numbers or ∗). A counter-
part of Theorem 7.1 is also true:

Theorem 8.1 DSpikaccP∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 2.

Proof. The proof is a direct consequence of the proof of Theorem 7.1. Namely, we start from a
deterministic register machine M and we construct the SN P system Π as in the proof of Theorem
7.1 – with changes which will be immediately mentioned –, as well as a further module, called
INPUT, which takes care of initializing the work of Π. This time Π has no object inside, and
the same is true with the new module.

The module INPUT is indicated in Figure 10. Its functioning is rather clear. Because the
system contains no spike inside, no rule can be applied. When a spike enters neuron in, this
neuron sends a spike to all neighbors c1, c2, c3, c4 (they are new neurons). Neurons c1, c2 do
nothing, they just wait for a second spike. Neurons c3, c4 spike immediately, sending together
two spikes to neuron 1 (it corresponds to the first register of M), as well as to each other. This
means that in each step each of c3, c4 fires, hence in each step the contents of neuron 1 increases
again with two spikes. If at some moment, at n steps after the first spike coming to the system,
a second spike enters neuron in coming from the environment, then this neuron spikes again.
For neurons c1, c2 this entails the firing, and thus neuron l0 gets the necessary spikes to fire,
while for neurons c3, c4 this means the end of work, because the spikes are erased by the rules
a2 → λ. Therefore, on the one hand, the contents of neuron 1 remains 2n, on the other hand,
neuron l0 triggers the simulation of a computation in M , starting with the instruction labeled
with l0, in recognizing the number n.

Note that this is consistent with the way the system Π from the proof of Theorem 7.1 works:
the neuron l0 starts by having two spikes inside, and the contents of register 1 is double the
number to analyze.
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Figure 10: Module INPUT (initiating the computation)

Now, we start using modules ADD and SUB associated with the register machine M , with
modules ADD constructed for instructions of the form l1 : (ADD(r), l2). This means that the
module ADD is now much simpler than in Figure 6, namely, it looks like in Figure 11.
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Figure 11: Module ADD in the deterministic case

The functioning of this modified ADD module is obvious, hence we omit the details.
The modules SUB remain unchanged, while the module FIN is simply removed, with the

neuron lh remaining in the system, with no rule inside. Thus, the computation will stop if and
only if the computation in M stops. The observation that the only forgetting rule as → λ with
s = 3 was present in module FIN, which is no longer used, completes the proof. 2

It is worth noting that both in this section and in the previous one, we use only firing rules
with immediate spiking and with spiking at the next step. Furthermore, the regular expressions
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we have used (in the SUB and FIN modules) are only meant to check the parity of the number
of spikes present in the neuron. Both these parameters – the maximal delay in spiking and the
complexity of the regular expressions used in rules – can be considered as complexity parameters
of our systems (and the results above show that universality can be obtained even for rather
simple systems from these points of view).

9 A Characterization of Semilinear Sets of Numbers

Let us now try to be more “realistic”, not allowing the neurons to hold arbitrarily many spikes
at the same time. This reminds of the sigmoidal function relating the input excitations to the
neuron exciting: after a given threshold, the additional spikes do not matter, they are simply
ignored.

Not very surprising (this reminds other characterizations of semilinear sets of numbers of or
vectors of numbers in terms of P systems – see, e.g., [3]), but interesting by the proof, the SN P
systems which have a bound on the number of spikes they hold during a computation generate
exactly semilinear sets of natural numbers.

Let us denote by Spik2Pm(rulek, consp, forgq, bounds) the family of sets of numbers N2(Π)
computed by SN P systems Π with at most m cells, using at most k rules in each cell, consuming
at most p and forgetting at most q spikes in each rule, and with at most s spikes present at any
time in any neuron (if a computation reaches a configuration where a neuron accumulates more
than s spikes, then it aborts, such a computation does not provide any result). As usual, we
replace by ∗ the parameters which are not bounded (bound∗ will mean that we consider only SN
P systems with a bound on the number of spikes present in any neuron, but this bound is not
specified; when boundα is simply missing from the notation, this will mean that the number of
spikes in neurons can grow arbitrarily, beyond any limit – like in the previous sections).

In this section we prove the following theorem:

Theorem 9.1 SLIN1 = Spik2P∗(rulek, consp, forgq, bounds), for all k ≥ 3, q ≥ 3, p ≥ 3, and
s ≥ 3.

We start with the inclusion which is simpler to prove:

Lemma 9.1 Spik2P∗(rule∗, cons∗, forg∗, bound∗) ⊆ SLIN1.

Proof. Take a system Π with a bound s on the number of spikes in each neuron. The number of
neurons is given, their contents is bounded, the number of rules in neurons (hence the length of
the refractory periods) is given, hence the number of configurations reached by Π is finite. Let
C be their set, and let C0 be the initial configuration of Π.

We construct the right-linear grammar G = (N, {a}, (C0, 0), P ), where N = C × {0, 1, 2},
and P contains the following rules:

1. (C, 0) → (C ′, 0), for C, C ′ ∈ C such that there is a transition C =⇒ C ′ in Π during which
the output neuron does not spike;

2. (C, 0) → (C ′, 1), for C, C ′ ∈ C such that there is a transition C =⇒ C ′ in Π during which
the output neuron spikes;

3. (C, 1) → a(C ′, 1), for C, C ′ ∈ C such that there is a transition C =⇒ C ′ in Π during which
the output neuron does not spike;
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4. (C, 1) → a(C ′, 2), for C, C ′ ∈ C such that there is a transition C =⇒ C ′ in Π during which
the output neuron spikes;

5. (C, 2) → λ, for C ∈ C if there is a halting computation C =⇒∗ C ′ in Π during which the
output neuron never spikes, or there is an infinite computation starting in configuration
C during which the output neuron of Π never spikes.

The way of controlling the derivation by the two components of the nonterminals in N ensures
the fact that N2(Π) is the length set of the regular language L(G), hence it is semilinear.

It is worth noting that the construction of grammar G is effective, because the conditions
involved in defining the rules – including those from step 5 – can be decided algorithmically. 2

The opposite inclusion is based on the observation that any semilinear set of numbers
is the union of a finite set with a finite number of arithmetical progressions. Now, a fi-
nite set is the union of a finite number of singleton sets. Thus, it suffices to prove the
closure under union and the fact that singleton sets and arithmetical progressions are in
Spik2P∗(rule3, cons3, forg3, bound3), and we will do this in the following series of lemmas, whose
conjunction – together with Lemma 9.1 – proves the theorem.

Lemma 9.2 Each singleton {n}, n ≥ 1, is in Spik2P1(rule2, cons1, forg0, bound2).

Proof. Take the system with only one neuron, containing initially two spikes, and two rules:

a2/a → a; 0, a → a; n− 1.

The first spike exits in step 1, the second one in step 2 + (n− 1), hence the computed number
is n. 2

Lemma 9.3 Each arithmetical progression {ni | i ≥ 1}, n ≥ 3, is in Spik2Pn+2(rule3, cons3,
forg2, bound3).

Proof. For given n as in the statement of the lemma, we consider the SN P system in Figure 12.
The neuron out spikes in step 1. The spike emitted by it goes along the path 1, 2, . . . , n− 2

until getting doubled when passing from neuron n− 2 to neurons n− 1 and 0. Both these last
neurons get fired. As long as neurons 0 and n − 1 spike in different moments (because neuron
0 uses the rule a → a; 1), no further spike exits the system (neuron out gets only one spike and
forgets it immediately), and one passes along the cycle of neurons 1, 2, . . . , n − 1, n again and
again. If neurons 0 and n − 1 spike at the same time (neuron 0 uses the rule a → a; 0), then
the system spikes again – hence in a moment of the form ni, i ≥ 1. The spike of neuron out
arrives at the same time in neuron 1 with the spike of neuron n, and this halts the computation,
because of the rule a2 → λ, which consumes the spikes present in the system. Consequently, the
system computes the “pure” arithmetical progression {ni | i ≥ 1}. 2

However, we have to compute not only “pure” progressions, but also of the form {r + ni |
i ≥ 1}, for n ≥ 1 and r ≥ 1. This is ensured by the following general result:

Lemma 9.4 If Q ∈ Spik2Pm(rulek, consq, forgp, bounds) and r ≥ 1, then {x + r | x ∈ Q} ∈
Spik2Pm+1(rulek, consp, forgq, bounds), for all m ≥ 1, k ≥ 2, p ≥ 3, q ≥ 0, s ≥ 3.
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Figure 12: An SN P system generating an arithmetical progression

Proof. Having a system Π, generating a given set Q, we add to this system a further neuron,
labeled with out′, with a synapse from the output neuron of Π to this new neuron; the new
neuron has initially a2 inside, and the rules

a3 → a; 0, a → a; r.

Let Π′ be the system obtained in this way, with the output neuron out′. If the system Π spikes
at moments t1 and t2, then Π′ spikes at the moments t1 + 1 and t2 + 1 + r, hence if Π computes
the number t2 − t1, then Π′ computes the number (t2 + 1 + r)− (t1 + 1) = (t2 − t1) + r. 2

We still have to consider two particular progressions, the one with step 2 and the one with
step 1. The former case was already covered by the second example from Section 5 (Figure 3).
The latter is the set N, which, from the fourth example from Section 5 (Figure 5) is know to be
in Spik2P4(rule2, cons2, forg3, bound2).

For proving the closure under union we need an auxiliary result. For an SN P system Π, let us
denote by spin(Π) the maximal number of spikes present in a neuron in the initial configuration
of Π.

Lemma 9.5 For every SN P system Π (not necessarily with a bound on the number of spikes
present in its neurons), there is an equivalent system Π′ such that spin(Π′) = 1. The system Π′

has spin(Π) + 1 additional neurons, all of them containing only one rule, of the form a → a; 0.

Proof. Take an arbitrary SN P system Π and construct a system Π′ as follows. We consider
further spin(Π)+1 neurons, with labels 0, 1, 2, . . . , spin(Π) (we assume that these labels are not
used also in Π). Neuron 0 is the only one in the whole system which contains any spike, namely
one (we remove all spikes from the neurons of system Π). The old neurons have the same rules
as in Π, while each new neuron contains only the rule a → a; 0. From neuron 0 start synapses to
all neurons 1, 2, . . . , spin(Π). From these neurons we establish as many synapses to the neurons
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of Π as many spikes they have in the initial configuration of Π (precisely, if a neuron l of Π has
nl spikes in the initial configuration of Π, then we establish the synapses (i, l), for all 1 ≤ i ≤ nl).
Thus, after two steps, all neurons of Π′ which correspond to neurons of Π contain exactly as
many spikes as they contained in the initial configuration of Π. No synapse goes back to the
new neurons, hence from now on the system works exactly as Π, that is, N2(Π′) = N2(Π). 2

We can now complete the proof of Theorem 9.1, by proving the “union lemma”:

Lemma 9.6 If Q1, Q2 ∈ Spik2Pm(rulek, consp, forgq, bounds), for some m ≥ 1, k ≥ 2, p ≥ 2,
q ≥ 1, s ≥ 2, then Q1 ∪Q2 ∈ Spik2P2m+6(rulek, consp, forgq, bounds).

Proof. Take two SN P systems Π1,Π2 in the normal form given by Lemma 9.5. Let in1, in2

be the labels of neurons in Π1, Π2, respectively, containing initially one spike. We construct a
system Π as suggested in Figure 13.
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Figure 13: The idea of the union construction

In the system Π constructed in this way only neuron 0 contains a spike (those from neurons
in1, in2 were removed. The non-deterministic functioning of neuron 2 will enable either the
(sub)system Π1, or the (sub)system Π2, hence Π can compute whatever any of the two systems
can compute. 2

Note that also this lemma holds true for arbitrary systems, not only for the bounded ones.
Theorem 9.1 can be interpreted in the following way: even if we use time as a support

for information, without using the classic workspace as a resource and without considering
information also encoded in the number of objects used in the system, we cannot compute “too
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much” – precisely, we cannot go beyond the semilinear sets (the length sets of regular languages).

From Theorem 9.1, all closure properties of the family SLIN1 are transferred to the family
Spik2P∗(rule∗, cons∗, forg∗, bound∗); for instance, we get the closure under sum, intersection,
complement, and the non-closure under product. Still more precise results also follow from
Lemmas 9.6 and 9.4, concerning the closure under union and the sum with a given number. A
similar situation is meet with respect to the non-closure under product:

Corollary 9.1 There are sets Q1, Q2 in the family Spik2P3(rule3, cons3, forg2, bound3) such
that Q1Q2 = {nm | n ∈ Q1,m ∈ Q2} is not in Spik2P∗(rule∗, cons∗, forg∗, bound∗).

Proof. We take Q1 = Q2 = {2, 3, . . .}. From the third example in Section 5 we know that
Q1 ∈ Spik2P3(rule3, cons3, forg2, bound3). Because Q1Q2 is the set of all composite num-
bers, and this set is not semilinear, from Theorem 9.1 it follows that Q1Q2 /∈ Spik2P∗(rule∗,
cons∗, forg∗, bound∗). 2

We end this section with the following general remark: all SN P systems considered in
the constructions from the proofs in this section and from Section 7 always halt (maybe a few
steps) after the second spiking. Thus, all results above are valid also in the restrictive case of
considering successful only halting computations (which spike exactly twice).

10 Closing Remarks

Starting from the definition of neural-like P systems and following the idea of spiking neurons
from neurobiology, we have proposed a class of spiking neural P systems for which we have
proved the universality in the general case and a characterization of semilinear sets of numbers
in the case when the number of spikes is bounded.

This work is the first one in this area, and many research directions remain to be explored
(several of them already mentioned in the previous sections), starting with considering further
ideas from neurobiology. Inhibiting/de-inhibiting mechanisms, dynamic structures of synapses,
changing the neurons themselves during their “lives” (maybe “damaging” ones and letting other
neurons to replace them), assigning a more important role to the environment, learning and
adapting to new inputs from the environment, and so on and so forth, can be issues to investigate.

Then, returning to the theoretical framework, the similarity with Petri nets is visible (both
models move “tokens” across a network), and equally the differences (there is no delay in spiking,
forgetting rules, counting states in Petri nets, neither universality for the basic classes of nets);
each domain has probably to import ideas and results from the other one.

We conclude the paper with a technical open problem. In Section 6 we have seen that two
neurons can compute at most finite sets. How many neurons – with unbounded contents – suffice
in order to compute a non-semilinear set of numbers?

Figure 14 gives a first answer, using 18 neurons. We start with 5 spikes in neuron 1, one in
neuron 4, and two spikes in each neuron 16 and 17. Iteratively, the 2n + 1 spikes from neuron
1 are moved to neuron 7, doubling all but the last one spike, hence getting 4n + 1 spikes in
neuron 7. The process is somewhat similar to that carried by the modules FIN and SUB from
the proof of Theorem 7.1 (2n is meant to represent the number n, which thus is doubled when
passing from neuron 1 to neuron 7). From neuron 7, all spikes are then moved back to neuron
1. After each cycle, neurons 6 and 10 spike. As long as the rule a → a; 0 is used in neuron 13,
the spike of neuron 10 is forgotten on the way towards the output neuron. Similarly, the two
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Figure 14: A “small” SN P system computing a non-semilinear set of numbers

spikes coming from neuron 6 to the output neuron are forgotten in neuron 18. When neuron 13
uses the rule a → a; 1, neuron out spikes, once when receiving the signal from neuron 10 and
once when receiving the signal from neuron 6, and this means that in between we have m steps,
for 2m + 1 being the contents of neuron 1 just moved to neuron 7. We leave the details to the
reader and we only mention that N2(Π) = {2n | n ≥ 2}, hence this non-semilinear set belongs
to Spik2P18(rule3, cons3, forg2).

Can these parameters be (significantly) decreased? Which is the smallest number of neurons
sufficient for computing a non-semilinear set of numbers?
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[10] Gh. Păun: Computing with membranes. Journal of Computer and System Sciences, 61
(2000), 108–143 (also TUCS Report 208, November 1998, www.tucs.fi).
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